- 7. Rizvi, A. M. (2010). Effective Technical Communication: A guide for Scientists and Engineers. New Delhi: Tata McGraw Hill.
- 8. Lewis, N. (2014). Word power made easy. Random House USA.

Course Code	Course Name	Teaching Scheme (Contact Hours)				Credits Assigned			
		Theory Pract.		act.	Tut.	Theory	Tut.	Pract.	Total
FEL201	Engineering Physics-II	-	0	1	-	-	-	0.5	0.5
Course Code	Course Name	Examination Scheme							
		Theory							
		Internal Assessment En			End	Exam.	Term	Pract.	Total
		Test1	Test 2	Avg.	Sem. Exam.	Duration (in Hrs)	Work	/oral	Iotai
FEL201	Engineering Physics-II						25		25

Objectives

- 1. To improve the knowledge about the theory learned in the class.
- 2. To improve ability to analyze experimental result and write laboratory report.

Outcomes: Learners will be able to...

- 1. Perform the experiments based on diffraction through slitsusing Laser source and analyze the results.
- 2. Perform the experiments using optical fibre to measure numerical aperture of a given fibre.
- 3. Perform the experiments on various sensors and analyze the result.

Suggested Experiments:(Any five)

- 1. Determination of wavelength using Diffraction grating. (Hg/Na source)
- 2. Determination of number of lines on the grating surface using LASER Source.
- 3. Determination of Numerical Aperture of an optical fibre.
- 4. Determination of wavelength using Diffraction grating.(Laser source)
- 5. Study of divergence of laser beam
- 6. Determination of width of a slit using single slit diffraction experiment(laser source)
- 7. Study of I-V characteristics of Photo diode.
- 8. Study of ultrasonic distance meter/ interferometer.
- 9. Study of PT100 calibration and use and thermometer
- 10. Study of J /K type thermocouple, calibration and use and thermometer
- 11. Simulation experiments based on nanotechnology using open source simulation softwares like Avogadro, Chimera, JMOL etc.

Term work:

Term Work shall consist of minimum five experiments.

The distribution of marks for term work shall be as follows:

- Laboratory work (Experiments and Journal) 10 marks :
- Project Groupwise (Execution & Submission) 10 marks : 05 marks
- Attendance (Theory and Tutorial) :