Course Code	Course Name	Teaching Scheme (Contact Hours)				Credits Assigned				
		Theory	y Pra	act.	Tut.	Theory	Tut.	Pract.	Total	
FEC204	Engineering Graphics	2	-	-		2			2	
Course Code	Course Name	Examination Scheme								
		Theory								
		Internal Assessment E			End	Exam.	Term	Pract.	Total	
		Test1	Test 2	Avg.	Sem. Exam.	Duration (in Hrs)	Work	/oral	Total	
FEC204	Engineering Graphics	15	15	15	60	3			75	

Objectives

- 1. To impart and inculcate proper understanding of the theory of projection.
- 2. To impart the knowledge of reading a drawing
- 3. To improve the visualization skill.

Outcomes: Learners will be able to...

- 1. Apply the basic principles of projections in Projection of Lines and Planes
- 2. Apply the basic principles of projections in Projection of Solids.
- 3. Apply the basic principles of sectional views in Section of solids.
- 4. Apply the basic principles of projections in converting 3D view to 2D drawing.
- 5. Read a given drawing.
- 6. Visualize an object from the given two views.

Module	Detailed Contents	Hrs.
01	Introduction to Engineering Graphics Principles of Engineering Graphics and their significance, usage of Drawing instruments, Types of Lines, Dimensioning Systems as per IS conventions. Introduction to plain and diagonal scales. Engineering Curves Basic construction of Cycloid, Involutes and Helix (of cylinder) only.	2
02	 Projection of Points and Lines Lines inclined to both the Reference Planes (Excluding Traces of lines) and simple application based problems on Projection of lines. @ Projection of Planes Triangular, Square, Rectangular, Pentagonal, Hexagonal andCircular planes inclined to either HP or VP only. (Exclude composite planes). 	5
03	Projection of Solids (Prism, Pyramid, Cylinder, Cone only) Solid projection with the axis inclined to HP and VP. (Exclude Spheres, Composite, Hollow solids and frustum of solids). Use change of position or Auxiliary plane method	5
04	Section of Solids Section of Prism, Pyramid, Cylinder, & Cone cut by plane perpendicular to at least one reference plane (Exclude Curved Section Plane). Use change of position or Auxiliary plane method.	5

05	#Orthographic and Sectional Orthographic Projections: - Fundamentals of orthographic projections. Different views of a simple machine part as per the first angle projection methodrecommended by I.S. Full or Half Sectional views of the Simple Machine parts.	3		
06	#@ Missing Views: The identification of missing views from the given views. Create the third view from the two available views so that all the details of the object are obtained.			
07	#Isometric Views: - Principles of Isometric projection – Isometric Scale, Isometric Views, Conversion of Orthographic Views to Isometric Views(Excluding Sphere).	3		
@ only in Term Work (i.e; Questions will not be asked for any examination.)				
# more problems should be discussed during practical hours to strengthen the concepts.				

Assessment:

Internal Assessment Test:

Assessment consists of two class tests of 15 marks each.

Among the two tests One is Conventional (manual drawing) and Second using CAD software.

End Semester Theory Examination:

- 1. Question paper will comprise of total 06 questions, each carrying 15marks.
- 2. Any 4 questions need to be solved. There won't be any compulsory Question
- 3. Total 04 questions need to besolved.
- 4. Remaining questions will be mixed in nature.(e.g. Suppose Q.2 has part (a) from module3 then part (b) will be from any module other than module 3)
- 5. In question paper weightage of each module will be proportional to number of respective lecture hrs as mentioned in thesyllabus.

Text Books.

- 1. N.D. Bhatt, "Engineering Drawing (Plane and solid geometry)", Charotar Publishing House Pvt. Ltd.
- 2. N.D. Bhatt & V.M. Panchal, "Machine Drawing", Charotar Publishing House Pvt. Ltd.

Reference Books

- 3. Narayana, K.L. & P Kannaiah (2008), Text book on Engineering Drawing, Scitech Publisher.
- 4. Prof. Sham Tickoo (Purdue University) & Gaurav Verma, "(CAD Soft Technologies) : Auto CAD 2012 (For engineers and Designers)", Dreamtech Press NewDelhi.
- 5. Dhananjay A Jolhe, "Engineering Drawing" Tata McGraw Hill.