Course Code	Course Name	Teaching Scheme (Contact Hours)				Credits Assigned			
		Theory	y Pra	act.	Tut.	Theory	Tut.	Pract.	Total
FEL101	Engineering Physics-I	-	- 0		-	-	-	0.5	0.5
Course Code	Course Name	Examination Scheme							
		Theory							
		Internal Assessment En			End	Exam.	Term	Pract.	Total
		Test1	Test 2	Avg.	Sem. Exam.	Duration (in Hrs)	Work	/oral	I Utai
FEL101	Engineering Physics-I						25		25

Objectives

- 1. To improve the knowledge about the theory learned in the class.
- 2. To improve ability to analyze experimental result and write laboratory report.

Outcomes: Learners will be able to...

- 1. Perform the experiments based on interference in thin films and analyze the results.
- 2. Verify the theory learned in the module crystallography.
- 3. Perform the experiments on various semiconductor devices and analyze their characteristics.
- 4. Perform simulation study on engineering materials.

Suggested Experiments: (Any five)

- 1. Determination of radius of curvature of a lens using Newton's ring set up
- 2. Determination of diameter of wire/hair or thickness of paper using Wedge shape film method.
- 3. Study of Miller Indices.
- 4. Study of Hall Effect.
- 5. Determination of energy band gap of semiconductor.
- 6. Study of Zener diode as voltage regulator.
- 7. Study of I/V characteristics of LED
- 8. Determination of 'h' using Photo cell.
- 9. Study of I / V characteristics of semiconductor diode
- 10. Charging and discharging characteristics of supercapacitor.
- 11. Simulation study of orientational ordering in Nematic like 2D liquid crystal.
- 12. Simulation experiments based on engineering materials using open source simulation softwares like Avogadro, Chimera, JMOL etc.

The distribution of marks for term work shall be as follows:

- Laboratory work (Experiments and Journal) : 10 marks
- Project Groupwise (Topic Presentation) : 10 marks
- Attendance (Theory and Tutorial) : 05 marks